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High-order amplitude equation for steps on the creep curve
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We consider a model proposed by one of the authors for a type of plastic instability found in creep
experiments which reproduces a number of experimentally observed features. The model consists of three
coupled nonlinear differential equations describing the evolution of three types of dislocations. The transition
to the instability has been shown to be via Hopf bifurcation, leading to limit cycle solutions with respect to
physically relevant drive parameters. Here we use a reductive perturbative method to extract an amplitude
equation of up toseventhorder to obtain an approximate analytic expression for the order parameter. The
analysis also enables us to obtain the bifurcation~phase! diagram of the instability. We find that while
supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually
takes over atone endof the region. These results are compared with the known experimental results. Approxi-
mate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their
corresponding numerical solutions of the equations describing the model. The analysis also shows that high-
order nonlinearities are important in the problem. This approach further allows us to map the theoretical
parameters to the experimentally observed macroscopic quantities.@S1063-651X~97!12011-6#

PACS number~s!: 62.20.Hg, 05.45.1b, 81.40.Lm, 83.50.By
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I. INTRODUCTION

Instabilities in plastic flow have been an object of atte
tion for a long time in metallurgical literature. Experime
tally, there are basically three modes of deformation o
specimen. The best known and mostly widely studied fo
of the instability arises when the specimen is subjected
constant rate of tensile deformation commonly referred to
the constant strain rate test@1,2#. Clearly, this method of
deformation is conceptually difficult to understand since
specimen is subjected to a predetermined response~i.e., a
constant rate of deformation!, and the force or the stres
developed in the sample is sought to be measured. U
normal conditions, one finds a smooth stress-strain cu
However, when the system is in the regime of instabil
~i.e., for some values of the material parameters!, the stress-
strain curve exhibits repeated load drops. Each of the l
drops is associated with the formation and propagation
dislocation bands@3#. There is another form of testing, whe
the deformation is carried out keeping the stress rate fix
Again, under normal conditions one finds a smooth stre
strain curve. However, when the material is deformed in
instability regime of the parameter space, one finds a step
response in the stress-strain curve. This method of defor
tion is equally popular among experimentalists for the stu
of the instability. However, conceptually the simplest for
of the instability @4# manifests itself when the material
subjected to a creep test wherein a force is applied and
response in the form of elongation of the specimen is m
sured. Here again, under normal conditions, the strain-t
curve is smooth. Under certain metallurgical conditions, o
sees steps on the creep curve suggesting a form of insta
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@4,5#. It is in the former two types of testing that the plast
instability manifests much more easily than in the last ca
and hence these two modes of deformation are usu
adopted. In contrast, the phenomenon of steps on a c
curve, which is the subject of the present discussion, is s
in much fewer instances@5,6#. Instabilities occurring in all
these forms are considered to be of common origin. T
phenomenon is referred to as the Portevin–Le Chate
~PLC! effect or the jerky flow, and is seen in several met
such as commercial aluminium, brass, on alloys of a
minium and magnesium@1#. In the case of the constant stra
rate case, it is observed only in a window of strain rates a
temperature.

It is generally agreed that the microscopic origin of t
instabilities arises due to the interaction of dislocations w
mobile point defects, and is referred to as dynamic str
aging. This leads to negative strain rate characteristic of
flow stress. The basic idea was formulated by Cottrell@7# a
few decades ago. Early phenomenological models, includ
Cottrell’s theory and its extensions@7,8#, do not deal with
time development. In contrast, techniques of dynamical s
tems address precisely this aspect. Recently, there has b
resurgence of interest in plastic instabilities@9–13# in light of
the introduction of new methodology borrowed from th
theory of dynamical systems. This has helped to obtain
sights hitherto not possible@10–20# One of the aims of such
theories is to be able to relate the microscopic dislocat
mechanisms to the measurable macroscopic quantities.

An attempt to understand the problem in the above p
spective was made by Ananthakrishna and co-workers
eral years ago@12,13#. The basic idea was to describe th
problem from the point of view of a far-from-equilibrium
transition, wherein the new temporal order could be d
scribed as a cooperative phenomenon@21,22#. In a series of
papers @23,24#, starting from an extended Fokker-Planc
equation for the velocity of dislocation segments, these

,
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thors arrived at a model which consisted of three types
dislocations and some transformations between them@12#.
The basic idea could be summarized by stating that li
cycle solutions arise due to nonlinear interaction betw
three different types of dislocations, suggesting a new m
ematical mechanism for the instability. Even though the s
tial inhomogeneous structure was ignored and only the t
poral oscillatory state was sought to be described, the m
and its extensions to the case of constant strain rate test@13#,
proved to be very successful in that it could explain most
the experimentally observed features such as the existen
bounds on strain rate for the PLC effect to occur, the ne
tive strain rate sensitivity, etc.@2,7,13#. One other important
prediction, which is a direct consequence of the dynam
basis of the model, is the existence of chaotic stress drop
a range of strain rates@14,15#. Recently, there have bee
several attempts which verify this prediction@17-20#. Indeed
this verification suggests that these few modes represen
collective degrees of freedom of dislocations. ~Note that the
spatially extended nature of the system implies infinite
grees of freedom.! From this point of view, dealing with the
temporal aspect appears to be justified. A description of
phenomenon which includes the initiation and propagation
the bands during the PLC effect has also been recently
tempted@16#.

Since the introduction of bifurcation theory into this fie
several years ago by our group@12,13#, several other groups
have also undertaken similar lines of attack@9–12,25#. In the
process, we feel that finer aspects of dynamical systems
been glossed over in this field. For instance, one often fi
that casual remarks are made about fast and slow m
without actually going through the procedure of demonst
ing the existence of such modes and eliminating the
modes in favor of the slow ones@25#. In addition, under the
adiabatic elimination, the resulting modes which serve
order parameter variables are very complicated function
the original modes. Yet, hand waiving arguments have b
used in building models which we believe are technica
suspect.

In our recent work@26# we showed how, under certai
conditions, one of the variables of the model could be ad
batically eliminated since the time constant of this mode
be chosen to be much faster than the other two~i.e., for low
values of a parameterb0, see below!. We then derived the
equation for the order parameter of the reduced model.
found both supercritical and subcritical bifurcation within t
range of applicability. We also found that the results were
good agreement both with the reported experimental res
and with the numerical solution of the model. Howev
eliminating one of the variables entirely restricts the appli
bility of the analysis to the two-dimensional plane of t
parameter space~parametersa and c; see below!. In addi-
tion, we also found that even within the limited domain, ve
high-order nonlinearities control most of the bifurcation d
main.

The purpose of the present work is to perform the analy
by keeping all the three modes in the model, and to exp
the entire instability domain spanned by all the three para
eters (a, b0, andc). In addition, this analysis should help u
to verify if high-order nonlinearities could control part of th
subcritical bifurcation, as found in our recent analysis@26#.
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This will help us to investigate the full nature of the bifu
cation in detail. We use the reductive perturbative meth
and extract a complex order parameter which is directly
lated to the amplitude and the frequency of the jumps on
creep curve. The analysis should also help us to compare
results with the experimental ones. The expression for
order parameter is checked by comparing it with the num
cal solution of the model.

In what follows ~Sec. II! we present a brief summary o
the model. In Sec. III we use the reductive perturbat
method to extract the amplitude equation up toseventh~sep-
tic! order. This enables us not only to determine the natur
bifurcation~i.e., supercritical or subcritical! exhibited by the
model, but also gives us an expression for the order par
eter over most of the instability domain. In Sec. IV, the a
proximate limit cycle solution obtained through the amp
tude equation is compared with the experimental results
well as with the numerical solution of the model. Section
contains summary and discusses our results.

II. MODEL FOR STEPS ON CREEP CURVE

We start with a brief summary of the model. The deta
of the model can be found in the original references@12#.
The model consists of mobile dislocations, immobile dis
cations, and another type which mimics Cottrell-type dis
cations, which are dislocations with clouds of solute atom
Let the corresponding densities beNm , Nim, andNi , respec-
tively. The rate equations for the densities of dislocations

dNm

dt
5uVmNm2bNm

2 2bNmNim1gNim2amNm , ~1!

dNim

dt
5bNm

2 2bNimNm2gNim1a iNi , ~2!

dNi

dt
5amNm2a iNi . ~3!

The first term in Eq.~1! is the rate of production of disloca
tions due to cross glide with a rate constantuVm , whereVm
is the velocity of the mobile dislocations, which in gener
depends on some power of the applied stress,sa . The sec-
ond term refers to two mobile dislocations either annihilati
or immobilizing. The third term also represents the annihi
tion of a mobile dislocation with an immobile one. Th
fourth term represents the remobilization of the immob
dislocations due to stress or thermal activation@seegNim in
Eq. ~2!#. The last term represents the immobilization of m
bile dislocations either due to solute atoms or due to ot
pinning centers.am refers to the concentration of the solu
atoms which participate in slowing down the mobile disl
cations. Once a mobile dislocation starts acquiring solute
oms, we regard it as a new type of dislocation, namely C
trell’s type Ni . This process is represented as an incom
term in Eq.~3!. As they acquire more and more solute atom
they will slow down and eventually stop the dislocation e
tirely. At this point, they are considered to have transform
to Nim . This process is represented by a loss term in Eq.~3!
and a gain term in Eq.~2!. These equations can be cast in
a dimensionless form by using scaled variables
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x5NmS b

g D , y5NimS b

uVm
D , z5Ni S ba i

gam
D , t5uVmt

~4!

to obtain

ẋ5~12a!x2b0x22xy1y, ~5!

ẏ5b0~b0x22xy2y1az!, ~6!

ż5c~x2z!, ~7!

where the dot represents differentiation with respect tot,
while a5am /uVm , b05g/uVm , and c5a i /uVm . Equa-
tions ~5!–~7! are coupled set of nonlinear equations whi
support limit cycle solutions for a range of parametersa, b0,
andc that are physically relevant.a refers to the concentra
tion of the solute atoms,b0 refers to the reactivation of im
mobile dislocations, andc to the time scales over which th
slowing down occurs. The dependence on stress and
perature appears throughVm . We demonstrated the exis
tence of limit cycle solutions and also obtained approxim
closed-form solutions for the limit cycles@12#. In addition,
the model was studied numerically. Using the Orowan eq
tion which relates the rate of change of strain (Ṡ) to dislo-
cation density and the mean velocity:Ṡ5bNmVm , with b as
the Burger’s vector, steps on the creep curve follow au
matically, since the densities of dislocations are oscillato
Several experimental results are reproduced@12#.

III. REDUCTIVE PERTURBATIVE APPROACH

We briefly outline the reductive perturbative approach
problems of formation of new states of order in far-from
equilibrium situations. Transitions occurring in these syste
are quite analogous to equilibrium phase transitions. T
general idea is to construct a ‘‘potential-like function’’ fo
the ‘‘order-parameter’’-like variable in the neighborhood
the critical value of the drive parameter. This would perm
the use of the methods developed in equilibrium phase t
sitions for further analysis.

Near the point of Hopf bifurcation of the system@Eqs.
~5!–~7!#, corresponding to a value near the critical drive p
rameter, a pair of complex conjugate eigenvalues and
other real negative eigenvalue exist for the linearized sys
of equations around the steady state. As we approach
critical value from the stable side, the real part of the pair
complex conjugate eigenvalues approaches zero from
negative side, and hence the corresponding eigendirec
have a slow time scale. As we enter the instability regi
these real parts become positive. In contrast, the effect o
change in the drive parameter on the real negative eigenv
is negligible. Thus,while the two eigenvectors correspon
ing to the pair of complex conjugate eigenvalues are s
modes, the eigenvector corresponding to the real nega
eigenvalue is a fast (and decaying) mode. For this reason, the
slow modes determine the formation of new states of ord
The reductive perturbative method is a method where
slow enslaving dynamics is extracted in a systematic w
@27-32#. The method involves first finding the critical eige
m-
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vectors corresponding to the bifurcation point and express
the general solution as a linear combination of these vect
The effect of the nonlinearity is handled progressively us
the multiple-scale method. The equation governing the co
plex order parameter takes the form of the Stuart-Lan
equation, and corresponds to the time-dependent Ginzb
Landau equation~TDGL! for a homogeneous medium
~Henceforth, we will also refer to this equation as the amp
tude equation.! On the other hand, the asymptotic solutio
which is a limit cycle, collapses to the subspace spanned
the slow modes with no trace of the fast mode. It may
worth emphasizing that this method is essentially the sam
reduction to the center manifold. Indeed, the equivalence
the center manifold theory@33–35# to the reductive pertur-
bation has been established@32#. Other techniques of extract
ing amplitude equations have been devised whose end re
are basically the same. For instance, a perturba
renormalization-group method@36,32#, and its recent exten
sion on the basis of envelope theory@37#, has also been
developed as a tool for a global asymptotic analysis wh
can be used to extract the amplitude equations.

We start with Eqs.~5!–~7!. There is only one fixed point
defined by

xa5za5
122a1@~122a!218b0#1/2

4b0
and ya5

1

2
.

~8!

Defining new variables which are deviations from the fix
point

X5x2xa , Y5y2ya , and Z5z2za , ~9!

Eqs.~5!–~7! become

Ẋ52~aX1xY1b0X21XY!, ~10!

Ẏ52b0~GX1dY2aZ2b0X21XY!, ~11!

Ż5c~X2Z!, ~12!

where

a5a12b0xa1ya21, x5xa21,

~13!

G5ya22b0xa , d5xa11.

Equations~10!–~12! will be solved reductive perturbatively
†We note here that it is possible to reduce this system
equations to only two by adiabatically eliminating Eq.~10!.
This is done by noting that, whenb0 andc are much smaller
than a, by rescaling Eq.~10!, it can be shown to be fas
variable and hence can be adiabatically eliminated. This
what was done in Ref.@26#.‡ Writing these equations as
matrix equation where the nonlinear part appears separa
from the linear part, we obtain

dRW

dt
5LRW 1NW , ~14!

where
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RW 5S X

Y

Z
D , ~15!

L5S 2a 2x 0

2b0G 2b0d ab0

c 0 2c
D , ~16!

and the nonlinear partNW is given by

NW 5S 2b0X22XY

b0~b0X22XY!

0
D . ~17!

Consider the stability of the fixed point as a function
the parameterc. The eigenvaluesl i , i 51, 0, and21, of the
matrix L are determined from the cubic equation

l32Tl21Pl2D50, ~18!

where

T52~a1db01c!, ~19!

P5db0c1a~db01c!2xGb0 , ~20!

and

D52b0c@ad1x~a2G!#. ~21!

The fixed point becomes unstable when one of the follow
conditions are violated@38#:

T,0,D,0 or D2PT.0. ~22!

It is easy to show that the first two inequalities are not v
lated. Substituting forD, P, andT in the third inequality of
Eq. ~22!, we obtain

~a1db0!c21@~a1db0!22xab0#c

1b0~a1db0!~ad2xG!,0 ~23!

as the condition for instability. Using the equality sign in E
~23! gives us the critical value of the drive parameter,c5c0,
for given values ofa and b0. For c,c0, the fixed point is
unstable. Sincec is non-negative~negativec is unphysical!,
we obtain a uniquec0 for the allowed pair ofa andb0 values
within the instability. Figure 1 shows a three-dimension
plot of the instability region involving all the three param
eters of the model.~Note that since all the variables and th
parameters are dimensionless quantities, we have plotte
figures in dimensionless quantities.!

To obtain an approximate analytical solution of Eq.~14!,
we follow a reductive perturbative approach similar to th
used in Refs.@30# and @31#. We choosec5c0(12e) with
0,e!1, and write the matrixL as a sum of two matrices
L5L01eL1, whereL0 is the matrixL evaluated forc5c0,
and
g

-

.

l

all

t

L1[S 0 0 0

0 0 0

2c0 0 c0

D . ~24!

The eigenvalues ofL0 are

l1,2156ıv and l05T, ~25!

wherev25P (P and T being evaluated atc5c0). Taking
the solution forRW as a growth out of the critical eigenmode
we express it as a linear combination of these eigenmod

RW ~t!5C eıvtrW11C0el0trW01C* e2ıvtrW1* 5(
j 51

21

C je
l jtrW j

~26!

whererW j ’s are right eigenvectors defined byL0rW j5l j rW j with
rW215rW1* . We also introduce left eigenvectors,sW j

T , defined

by sW j
TL05l j sW j

T , whereT stands for the transpose. Substitu

ing this expression forRW in the matrix equation, Eq.~14!,
and multiplying both sides of the equation by one of the l
eigenvectors, we obtain an equation governing the co
sponding amplitude:

el jt
dC j

dt
5e(

k
m jkCke

lkt1 (
l ,m ,m< l

gj lmC lCme~l l1lm!t.

~27!

Expressions for the coefficientsm jk andgjlm are given in Eq.
~C11! and Eqs.~C13! and ~C14!, respectively, in Appendix
C.

We expressC j as a power series expansion ine1/2:

C j5e1/2c j
~1!1ec j

~2!1e3/2c j
~3!1•••, ~28!

and introduce multiple time scales such that

d

dt
5

]

]t
1e

]

]t1
1e2

]

]t2
1•••, ~29!

FIG. 1. The instability region determined by all the three ind
pendent parametersa, b0, andc of the model. It is bounded by the
three surfaces: thec0 surface~shown by a series of curved lines!,
the c50 plane~shown by a series of straight lines!, and theb050
plane.@Note that thec0 surface is determined from Eq.~23!.#
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wheret15et, t25e2t, . . . . Substituting these expression
for C j and d/dt into the equation for the amplitudes, E
(27), we successively solve by equating terms of the sa
order in powers ofe. First, terms ofO(e1/2) give

]c j
~1!

]t
50, ~30!

implying that c j
(1) is constant in the time scale oft. O(e)

terms give the equation

]c j
~2!

]t
5 (

k,l ,l<k
gjklck

~1!c l
~1!e~lk1l l2l j !t, ~31!

which, upon integration, gives

c j
~2!el jt5 (

k,l , l<k
hjklck

~1!c l
~1!e~lk1l l !t, ~32!

wherehjkl5gjkl /(lk1l l2l j ).O(e3/2) terms give the equa
tion

]c j
~3!

]t
1

]c j
~1!

]t1
5(

k
m jkck

~1!e~lk2l j !t1 (
k,l , ,l<k

gjkl~ck
~1!c l

~2!

1ck
~2!c l

~1!!e~lk1l l2l j !t. ~33!

Using the compatibility condition, we match terms that a
varying on a slow time scale found on both sides of
equality, and extract the slow dynamics

]c j
~1!

]t1
5m j j c j

~1!1h j uc1
~1!u2c j

~1! . ~34!

An expression forh j is given in Eq.~C12! in Appendix C.
Since we are interested in asymptotic solutions, the equat
governing the oscillatory amplitudeC and its complex con-
jugateC* are our concern.~The subscriptj 51 is left out
from C1 for the sake of brevity.! To O(e1/2), C5e1/2c (1)

and, thus, Eq. (27) takes the form of acubic Stuart-Landau
equation:

dC

dt
5emC1huCu2C. ~35!

Note that m(5m11)[m r1ım i and h(5h1)[h r1ıh i are
complex coefficients.C is the complex order parameter var
able whose steady-state solution gives its amplitu
~squared! as

uCu252e
m r

h r
, ~36!

and its frequencyV ~with C5uCueıVt) as

V5eS m i2
h i

h r
m r D . ~37!

This solution exists providedh r is negative sincem r is posi-
tive. h r is found to be negative over a major part of t
instability region in theb02a plane, as shown in Fig. 2~the
unshaded region!. In this case, since the amplitude of th
e

e

ns

e

order parameter grows continuously in proportion toe1/2 @see
Eq. ~36!#, the transition is continuous~a second-order-type
transition! corresponding to supercritical bifurcation. The
is a relatively small portion of the instability region, show
in the same figure in shades, whereh r is found to be positive
implying that the transition is discontinuous corresponding
subcritical bifurcation. In this regime, one has to go to qu
tic or even higher terms in the amplitude equation to obt
an expression for the order parameter. We carried out
reductive perturbative method further to derive thequintic,

d

dt
C5emC1huCu2C1nuCu4C, ~38!

as well asseptic,

d

dt
C5emC1huCu2C1nuCu4C1juCu6C, ~39!

amplitude equations.@Expressions for the complex coeffi
cientsn5n r1ın i andj5j r1ıj i are given in Eqs.~A3! and
~A4!, respectively, in Appendix A.# The amplitude~squared!,
uCu2, and frequency,V, found from the steady-state solutio
of the quintic amplitude equation, are

uCu25
1

2 H 2
h r

n r
1F S h r

n r
D 2

24e
m r

n r
G1/2J , ~40!

and

V5em i1h i uCu21n i uCu4, ~41!

while these same quantities found from the steady-state
lution of the septic amplitude equation are

FIG. 2. Plot of the bifurcation diagram in thea-b0 plane. The
instability region is bounded by the parabolic-shaped curve and
b050 line. The unshaded~shaded! region exhibits supercritica
~subcritical! bifurcation. The shaded region marked by dots~open
circles! shows the portion within the subcritical bifurcation, whe
the quintic~septic! amplitude equation is supposed to hold.
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uCu25
1

2 H 2
n r

j r
1F S n r

j r
D 2

24
h r

j r
G1/2

1e
m r

h r
J 1O~e2!

~42!

and

V5em i1h i uCu21n i uCu41j i uCu6. ~43!

The ranges of validity of the quintic and septic amplitu
equations enable us to describe a large portion of the
critical bifurcation. Figure 2 also shows the portion with
the subcritical bifurcation where the dynamics of the syst
is supposed to be governed by thequintic ~marked by dots!
and septic ~marked by open circles! amplitude equations
The rest of the domain of subcritical bifurcation, whereeven
higher-order amplitude equation need to be considered
marked by crosses on the same figure.

As can be seen from Fig. 2, there are two distinct regi
of subcritical bifurcation located on either side ofa50.5.
The crossover from a supercritical to subcritical bifurcati
is first seen forb050.01 arounda50.65 as the value ofb0 is
reduced. The extent of subcritical bifurcation in theb02a
plane increases asb0 decreases. The validity of the ampl
tude equations will be examined by comparing t
asymptotic solution derived from them with that of the lim
cycle solution found by numerically integrating the mod
equations.

IV. COMPARISON WITH EXPERIMENTS
AND NUMERICAL SOLUTIONS

A. Comparison with experiments

To start with, consider the supercritical regime, where
pressions for the amplitude and period of the limit cycle
relatively simple. Using the steady-state solution of the cu
amplitude equation, Eqs. (36) and (37), the dependenc
amplitude uCu2 and periodP @}1/(v1V)#, of the limit
cycle ona or b0 can be obtained.~Here we will only con-
sider how the two quantitiesuCu2 and P depend onb0 for
fixed a. A similar analysis can be carried out for parametea
fixing b0.! The parameterb0(5g/uVm) is a function of the
applied stress (sa) and temperature (T). As remarked ear-
lier, g represents the stress and thermal activation, and
temperatures of interest, thermal activation can be co
pletely ignored. As for the stress activation, it is a thresh
process and, therefore, can be taken to have a weak de
dence on stress until a critical value of this stress, bey
which it should show a rapid increase. One such functio
form for g could be exp(2sc /s), wheresc represents the
value of the stress beyond which the function rapidly ris
Since stress activation occurs at large values, one expecsc
to be large. Using the standard expression@39# for
Vm(sa ,T)5V0(sa /s0)mexp(2Em /kT) ~with m.1), we
obtain

b0;g~s!S sa

s0
D 2m

eEm /kT. ~44!

From this, we see thatb0 has a decreasing dependence
stress, with the term (sa /s0)2m dominating up tosc , be-
yond which it should increase. Clearly,b0 decreases as
b-
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function of T. Figure 3 shows plots ofuCu2 and P as a
function ofb0. From the above discussion on the depende
of b0 on s andT, we see thatuCu2 should increase as stres
increases for themajor part of the stress value, sincesc is
large. On the other hand, it should decrease with an incre
in temperature. Since stress and temperature are measu
quantities, our predictions can be compared with experim
tal results. The amplitude and period of the limit cycle a
related, respectively, to the amount of strain jumps and
period of the jumps on the creep curve calculated through
Orowan equation. There are very few experiments in t
mode of testing, as mentioned in Sec. I. The only experim
where this dependence on stress and temperature has
measured for a limited range is that in Ref.@5#. According to
this, the amplitude of the strain jumps increases with str
while its period has a decreasing dependence on stress
periments from constant strain rate case also exhibit the s
trend when the results are translated in terms of cons
stress experiments. It is well known that the amplitude of
stress drops decreases with applied strain rate. In fact, e
the numerical solution of the equations extended to the c
stant strain rate case predicts this behavior@13#. This implies
that the amplitude of strain jumps should increase as st
increases@40#. @This relation can be seen as follows. In th
constant strain rate case, the deformation rate is fixed,
the stress developed in the sample is measured. When
contribution to the plastic strain rate increases due to
creased dislocation motion~for whatever reasons!, the stress
has to fall in order to keep the applied strain rate consta
Thus the relation between strain rate and stress is oppos#
Clearly, the general trend is consistent with the experime
results for most of the value ofb0. The authors of Ref.@5#
also reported that the amplitude of the strain jumps increa
while its period decreases with increase in temperatu
which is consistent with our result.

Figure 4 shows plots of the amplitude~squared! and pe-
riod of the limit cycle~LC! as a function ofb0 for a certain
interval within the subcritical bifurcation. Using an analys

FIG. 3. Plots ofuCu2 and P vs b0 within the supercritical do-
main, whena50.45 ande50.01.
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similar to that above, we find that while the dependence
the amplitude onb0 is consistent with the experimental re
sults reported in Ref.@5#, the dependence of the period onb0
is predominantly inconsistent with this report.

Experiments in the constant strain rate case show tha
stress drops are seen to arise both abruptly as well as
tinuously @10#. Translating this result to the constant stre
case, it implies that the strain jumps can arise both abru
and continuously. This feature is manifest in the supercrit
and subcritical bifurcations seen in our calculations.

B. Comparison with numerical solutions

Having derived the amplitude equation, we now comp
its result with the numerical solutions obtained via Eq
~10!–~12!. As stated earlier, there are two distinct types
solutions, namely, the supercritical and the subcritical so
tions. Even in the region of subcritical bifurcation, we ha
three types—first, where the quintic amplitude equat
works; second, where the septic amplitude equation wo
and, third, the rest of the instability domain where ev
higher-order nonlinearities dominate and, as such, req
even higher-order amplitude equations. We will compare
solutions obtained from these with the numerically exact
lutions of Eqs.~10!–~12!.

First consider the supercritical region. Using the stea
state solution of the cubic amplitude equation, Eqs.~36! and
~37!, in Eq. ~26! leads to an analytic expression for the L
near bifurcation points in the domain of supercritical bifu
cation. This is usually referred to as thesecular equation.
The derivation of the equations governing the LC are giv
in Appendix B. This solution can be compared with the n
merically exact solution obtained by integrating the syst
of equations, Eqs.~10!–~12!. Since the region of applicabil
ity in the b02a plane is large, we choose one solution f
large values ofb0 ~at the top end of the bifurcation diagram!
and another value ofb0 at the lower end. Figures 5~a! and
5~b! show the plots of the secular equation along with th
respective numerical solutions for two widely spaced tran

FIG. 4. Plots ofuCu2 andP vs b0 within the subcritical domain
whena50.39 ande51024.
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tion points within the domain of supercritical bifurcation. A
can be observed clearly, they match very well.

In a manner similar to the supercritical bifurcation, th
analytic expression for the LC for alarge portion of the
domain of the subcritical bifurcationis obtained by using the
steady-state solution of the quintic or septic amplitude eq
tions. In this case, there are three distinct types of solutio
~a! first, wheren r is negative andj r positive, implying that
only the quintic amplitude equation has a steady-state s
tion; ~b! second, whenn r andj r are both negative implying
that both the quintic and septic amplitude equations sup
steady-state solutions; and~c! third, whenn r is positive and
j r is negative, implying that the septic amplitude equati
supports a steady-state solution while the quintic does
The resulting LC’s are compared with those found from t
numerical ones. For case~a!, we picked two different bifur-

FIG. 5. Plots of the limit cycle solutions~in the X-Z plane!
obtained from the secular equation~solid line! and that obtained
from numerical integration of the model@Eqs.~10!–~12!# ~marked
with dots! when ~a! a50.521,b050.0202, ande50.1, and when
~b! a50.6, b050.01, ande50.001. Both bifurcation points lie
within the supercritical bifurcation domain.
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6924 56MULUGETA BEKELE AND G. ANANTHAKRISHNA
cation points—one to the right and another to the left
a50.5. Plots in Figs. 6~a! and 6~b! show LC’s, obtained
from the secular equation and from numerical equations.
case~b!, Fig. 7 shows three plots of LC’s, two of which ar
obtained from the secular equations corresponding to
quintic and septic amplitude equations, while the third one
obtained from the numerical solution. It is clear from th
figure that the LC derived from the septic amplitude equat
is a better approximation than that derived from the quin
one. This shows that the ‘‘containing’’ role is played n
only by the quintic but also by the septic~and even higher!
term of the nonlinearity. We also find that the region ov
which such a situation is valid is a substantial portion of
validity of the quintic amplitude equation, suggesting th
higher-order nonlinearities are in fact important, as was

FIG. 6. Plots of the limit cycle solutions~in the X-Z plane!
obtained from the secular equation~solid line! and that obtained
from numerical integration of the model@Eqs.~10!–~12c!# ~marked
with dots! when~a! a50.647,b050.009 ande50.01 and when~b!
a50.38, b050.004, ande50.0001. Both bifurcation points lie
within the subcritical bifurcation domain where the quintic amp
tude equation holds~i.e., n r,0 andj r.0).
f

or

e
is

n
c

r
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dicated by our earlier work@26#. We show case~c! in Fig. 8,
comparing the LC derived from the septic amplitude eq
tion with that of the numerical one for a bifurcation poi
where the quintic amplitude equationdoes nothold. The
agreement is reasonable except around the sharp tur
point.

Finally, it is worthwhile to state that expansion of th
amplitude equation even up to septic term fails to cover

FIG. 7. Plots of the limit cycle solution~in the X-Z plane! ob-
tained by using the secular equation derived from the quintic a
plitude equation~outer solid line!, from the septic amplitude equa
tion ~inner solid line! and that obtained from numerical integratio
of the model@Eqs.~10!–~12!# ~marked with dots! whena50.375,
b050.004 ande50.0001. The bifurcation point lies within the sub
critical bifurcation domain, whereboth n r andj r are negative.

FIG. 8. Plots of the limit cycle solution~in the X-Z plane! ob-
tained from the secular equation~solid line!, and that obtained from
numerical integration of the model@Eqs.~10!–~12!# ~marked with
dots! when a50.37, b050.001, ande50.0001. The bifurcation
point lies within the subcritical bifurcation domain wheren r.0 and
j r,0.
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56 6925HIGH-ORDER AMPLITUDE EQUATION FOR STEPS ON . . .
entire instability domain, even though most of it is covere
This also suggests that higher-order nonlinearities control
rest of the subcritical bifurcation domain. This feature is n
usually encountered in model systems.

The above comparison reveals the following:~i! The ex-
pression for the LC in the supercritical domain mimics t
numerical solution very well, providede is taken to be smal
enough.~ii ! In the subcritical domain, the two results als
generally match well with each other. However, for values
the parameters where the value ofc is close to zero~which
also corresponds to small values ofb0), higher-order nonlin-
earities could supplement the contributions arising from
lower ones in determining the LC. In other words, if th
coefficient of the next-higher order has also a negative
part, its contribution may have to be included in the expr
sion for the order parameter.

V. SUMMARY AND DISCUSSION

We have carried out a reductive perturbative approac
the problem of steps on the creep curve, regarding it a
formation of ordered state when the system is driven aw
from equilibrium. The dynamics of the system is describ
by two coupled amplitude equations: one for a transient
der parameterC0, and another for the complex order param
eter C in the neighborhood of the bifurcation point. Th
order parameterC represents both the amplitude and t
phase of the limit cycle solution whene.0. Since the above
derivation is valid only in the neighborhood of the critic
value, the expression for the order parameterC is valid only
for small e. This has been exemplified by the quite reaso
able agreements between the LC solutions found from
analytic expression and that from the numerical integrat
of the model. We have shown that both supercritical a
subcritical bifurcations are seen in the transitions to the
stability domain.While the major part of the phase bounda
exhibits supercritical bifurcation, subcritical bifurcation
gradually dominates as the value of b0 is reduced. The re-
sults of an earlier calculation@12# which used the method o
relaxation oscillation and showed a first-order-type tran
tion, is consistent with the present one since the values of
parameters (a50.63,b051024) falls in the subcritical bifur-
cation domain. In our more recent work@26#, where we first
adiabatically eliminated one of the variables and then app
the reductive perturbative method for the reduced model,
found both supercritical and subcritical regions. Howev
due to the fact the adiabatic elimination itself was valid on
for small values ofb0, the results were found to be valid in
small domain. Further, we found that very high-order no
linearities were important. This result is supported by
present calculation.

The present analysis shows a feature which is norm
not seen in model systems, namely, that higher-order te
than quintic may control the subcritical bifurcation. In fac
even when the quintic term plays the containing role, high
order terms may also contribute significantly to the role
containment. Thus, in deriving the expression for the LC
may be necessary to find out how higher- and higher-or
nonlinear terms in the expansions in the amplitude equa
contribute to the asymptotic solution.

We comment here on the unusual feature of the mode
.
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the context of phase transitions. For conventional models
the language of phase transitions, the free energy is descr
by an expansion in power series of the order parameter u
sixth power. While the free energy for second-order ph
transitions can be described by retaining up to fourth pow
in the order parameter, it is usually sufficient to retain t
sixth power for the description of first-order phase transitio
~with the appropriate signs for the coefficients in the exp
sion!. In the present case, however, we need to go to as h
as the eighth power~or more! of the order parameter in som
regions of the drive parameter to describe the correspon
free energy when the transition is of first-order type. Th
feature is rather unusual, and not found in conventional m
els of phase transitions.

Due to the closed-form expressions for the order para
eter, the present calculation helps us to map the theoretic
introduced parameters to the experimentally measured q
tities. For instance, in experiments, one measures the am
tude of the strain jumps on the creep curve as well as th
frequency as a function of stress and temperature. The
pendence of the amplitude of the strain jumps and its
quency on stress and temperature can be evaluated by u
the order parameter equations in Orowan’s equation by n
ing that uCu corresponds to the amplitude of the strain jum
while the frequencyV together withv gives a measure o
the frequency of the steps. By properly relating the paramete
b0 to stress and temperature, we found that for a cer
range of the instability the amplitude increases while
period decreases as stress increases~at constant temperature!,
qualitatively agreeing with the reported experimental res
of Ref. @5#. Also, the amplitude increases while the peri
decreases as temperature is increased~at constant stress!
which is again consistent with the experimental results
Ref. @5#. In addition, we found other ranges within the inst
bility showing various kinds of dependence of the order p
rameter on stress and temperature.

Finally, the present exercise demonstrated the com
cated dependence of the order parameter variable on
original modes. This will serve as a warning to those us
hand waiving arguments for declaring certain modes as
modes and others as slow modes in the modeling of s
problems.
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APPENDIX A

In this appendix we give expressions for the coefficie
appearing in the TDGL equation, i.e., expressions form, h,
n, and j in the equation (d/dt)C5emc1huCu2C
1nuCu4C1juCu6C. Note that they are functions of the pa
rametersa, b0, andc. They are given below:

m5m11, ~A1!
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h5 (
k<a< j ,g<b

~g1 j ahj bg1g1akhkbg!. ~A2!

In Eq. ~A2! and all the following equations, summations ov
latin alphabets run over 1, 0, and -1 while those overGreek
alphabets run over61. A summation of Eq.~A2! includes
only those terms which satisfy the conditiona1b1g51,

n5(
k< j

~Tjk
~1,4!1Tjk

~2,3!!, ~A3!

where

Tjk
~1,4!5 (

z<d<g<b<a
~g1 j auj bgdz1g1akukbgdz! ~A4!

and

Tjk
~2,3!5 (

b<a,z<d<g
~hj abtkgdz1hkabt j gdz!, ~A5!

with the condition on the summations of Eqs.~A4! and~A5!
to bea1b1g1d1z51. Finally, the septic coefficientj is
given by

j5(
k< j

~Tjk
~1,6!1Tjk

~2,5!1Tjk
~3,4!!, ~A6!

where

Tjk
~1,6!5 (

k<a< j ,s<r<z<d<g<b<a
~g1 j awj bgdzrs

1g1akwkbgdzrs!, ~A7!

Tjk
2,55 (

b<a,s<r<z<d<b<a
g1 jk~hj abvkgdzrs1hkabv j gdzrs!,

~A8!

and

Tjk
3,45 (

g<b<a,s<r<z<d
g1 jk~ t j abgukdzrs1tkabguj dzrs!,

~A9!

with the constrainta1b1g1d1z1r1s51 imposed on
the summations of Eqs.~A9!, ~A10!, and~A11!. Expressions
for m jk , gjkl , hjkl , t jklm , ujklmn , v jklmnp , andwjklmnpq are
given in Appendix C.

APPENDIX B

In this appendix, an~approximate! asymptotic solution for
RW describing the limit cycle will be derived using the stead
state solution of the particular TDGL equation. For the ins
bility region where the cubic TDGL equation holds, expa
sion of C up to c j

(2) will be involved in determiningRW , so
that

RW 5ec0
~2!elotrW01@~e1/2c~1!1ec~2!!eiwtrW1c.c.#.

~B1!
r

-
-
-

Note that the asymptotic solution does not contain
c0

(1)el0t term since,l0 being negative, it decays in time. T
O(e1/2),

C5e1/2c~1! ⇒ c~1!5e21/2C. ~B2!

Using Eqs.~B2! and~32! in Eq. ~B1! will enable us to derive
the components ofRW , which are given by

X5AxuCucos~Vct1ux!1B1xuCu2cos~2Vct1fx!

1B2xuCu21B3xuCu2cos~2Vct1wx!, ~B3!

Y5AyuCucos~Vct1uy!1B1yuCu2cos~2Vct1fy!

1B2yuCu21B3yuCu2cos~2Vct1wy!, ~B4!

and

Z5AzuCucos~Vct1uz!1B1zuCu2cos~2Vct1fz!

1B2zuCu21B3zuCu2cos~2Vct1wz!, ~B5!

where

Vc5V1v, ~B6!

Ad52ur 1du, ~B7!

ud5sin21S Im~r 1d!

ur 1du D , ~B8!

B1d52uh111r 1du, ~B9!

fd5sin21S Im~h111r 1d!

uh111r 1du D , ~B10!

B2d52uh1121r 1du, ~B11!

B3d52uh12121r 1du, ~B12!

and

wd5sin21S 2Im~h12121r 1d!

uh12121r 1du D . ~B13!

Here the subscriptd denotesx, y, or z, while Im denotes the
imaginary part of the concerned argument. Expressions
hjkl and r jd are given in Appendix C. For the instabilit
region where quintic~or septic! TDGL equation holds, an
expansion ofC up toc j

(4) ~or up toc j
(6)) will be required in

determiningRW , so that

RW 5 (
n52

N

en/2c0
~n!elotrW01 (

n51

N

@en/2c~n!eivtrW1c.c.#

~B14!

with N54 ~quintic case! or 6 ~septic case!. The same proce-
dure as done for the cubic case follows for the quintic as w
as the septic cases.
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APPENDIX C

In this appendix we first give the expressions forhkl, j ,
tklm, j , uklmn, j , vklmnp, j , andwklmnpq, j that appear as coeffi
cients in the determination ofc j

(2) , c j
(3) , c j

(4) , c (5), and
c (6), respectively, such that

c j
~2!el jt5(

l<k
hjklck

~1!c l
~1!e~lk1l l !t, ~C1!

c j
~3!el jt5 (

m< l<k
t jklmck

~1!c l
~1!cm

~1!e~lk1l l1lm!t, ~C2!

c j
~4!el jt5 (

n<m< l<k
ujklmnck

~1!c l
~1!cm

~1!cn
~1!e~lk1l l1lm1ln!t,

~C3!

c j
~5!el jt5 (

p<n<m< l<k
v jklmnp

3ck
~1!c l

~1!cm
~1!cn

~1!cp
~1!e~lk1l l1lm1ln1lp!t,

~C4!

and

c j
~6!el jt5 (

q<p<n<m< l<k
wjklmnpq

3ck
~1!c l

~1!cm
~1!cn

~1!cp
~1!cq

~1!

3e~lk1l l1lm1ln1lp1lq!t. ~C5!

We give only those coefficients that contribute to t
asymptotic solution. Note that summation over latin alph
bets take values 1, 0 and -1 while summation over Gr
alphabets take values61:

hj ab5
gj ab

la1lb2l j
, ~C6!

t j abg5
1

Cj abg
(

l<a<k
~gj a lhlbg1gjkahkbg!, ~C7!

provided a1b1gÞ j . Otherwise, t j abg50.
Cj abg5la1lb1lg2l j ,

uj abgd5
1

Cj abgd
(
k,l

@~gj a l t lbgd1gjkatkbgd!

1gjkl~hkabhlgd!#, ~C8!

whereCj abgd51/(la1lb1lg2l j ):
-
k

v j abgdz5
1

Cj abgdz
(
k,l

@~gj a lulbgdz1gjkaukbgdz!

1gjkl~hkabt lgdz1hlabtkgdz!#, ~C9!

provided a1b1g1d1zÞ j . Otherwise,v j abgdz50. The
expressionCj abgdz51/(la1lb1lg1ld1lz2l j ),

wj abgdzr5
1

Cj abgdzr
(
k,l

@Q1gjkl~hkabulgdzr1hlabukgdzr!

1gjkl tkabgt ldzr#, ~C10!

where Q5(gj a lv lbgdzr1gjkavkbgdzr) and Cj abgdzr

5 1/(la1lb1lg1ld1lz1lr2l j ).
Next we give the expressions form jk , h j , andgjkl :

m jk5
c0sjz~2r kx1r kz!

sW j
TrW j

, ~C11!

h j5 (
l<a<k,g<b

~gjkahkbg1gj a lhlbg!, ~C12!

for kÞ l , gjkl52 f xx jr kxr lx1 f xy j~r kxr ly1r kyr lx!,
~C13!

while

gjkk5 f xx jr kx
2 1 f xy jr kxr ky , ~C14!

where

f xx j5
b0~2sjx1b0sjy!

sW j
TrW j

, ~C15!

f xy j5
2~sjx1b0sjy!

sW j
TrW j

, ~C16!

rW j
T5~r jx r jy r jz!, ~C17!

sW j
T5~sjx sjy sjz!, ~C18!

sW j
TrW j5sjxr jx1sjyr jy1sjzr jz , ~C19!

r jx5x~c01l j !, ~C20!

r jy52~c01l j !~a1l j !, ~C21!

r jz5c0x, ~C22!

sjx52~c01l j !~b0d1l j !, ~C23!

sjy5r jx , ~C24!

and

sjz5ab0x. ~C25!
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