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High-order amplitude equation for steps on the creep curve
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We consider a model proposed by one of the authors for a type of plastic instability found in creep
experiments which reproduces a number of experimentally observed features. The model consists of three
coupled nonlinear differential equations describing the evolution of three types of dislocations. The transition
to the instability has been shown to be via Hopf bifurcation, leading to limit cycle solutions with respect to
physically relevant drive parameters. Here we use a reductive perturbative method to extract an amplitude
equation of up toseventhorder to obtain an approximate analytic expression for the order parameter. The
analysis also enables us to obtain the bifurcatiphase diagram of the instability. We find that while
supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually
takes over abne endof the region. These results are compared with the known experimental results. Approxi-
mate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their
corresponding numerical solutions of the equations describing the model. The analysis also shows that high-
order nonlinearities are important in the problem. This approach further allows us to map the theoretical
parameters to the experimentally observed macroscopic quant#ies63-651X%97)12011-9

PACS numbg(s): 62.20.Hg, 05.45tb, 81.40.Lm, 83.50.By

I. INTRODUCTION [4,5]. It is in the former two types of testing that the plastic
instability manifests much more easily than in the last case,
Instabilities in plastic flow have been an object of atten-and hence these two modes of deformation are usually
tion for a long time in metallurgical literature. Experimen- adopted. In contrast, the phenomenon of steps on a creep
tally, there are basically three modes of deformation of acurve, which is the subject of the present discussion, is seen
specimen. The best known and mostly widely studied formn much fewer instancegb,6]. Instabilities occurring in all
of the instability arises when the specimen is subjected to ¢hese forms are considered to be of common origin. The
constant rate of tensile deformation commonly referred to aphenomenon is referred to as the Portevin—Le Chatelier
the constant strain rate teft,2]. Clearly, this method of (PLC) effect or the jerky flow, and is seen in several metals
deformation is conceptually difficult to understand since thesuch as commercial aluminium, brass, on alloys of alu-
specimen is subjected to a predetermined respinse a  minium and magnesiuiil]. In the case of the constant strain
constant rate of deformatipnand the force or the stress rate case, it is observed only in a window of strain rates and
developed in the sample is sought to be measured. Undegmperature.
normal conditions, one finds a smooth stress-strain curve. It is generally agreed that the microscopic origin of the
However, when the system is in the regime of instabilityinstabilities arises due to the interaction of dislocations with
(i.e., for some values of the material parametettse stress- mobile point defects, and is referred to as dynamic strain
strain curve exhibits repeated load drops. Each of the loaeging. This leads to negative strain rate characteristic of the
drops is associated with the formation and propagation oflow stress. The basic idea was formulated by Cotffélla
dislocation bandg3]. There is another form of testing, where few decades ago. Early phenomenological models, including
the deformation is carried out keeping the stress rate fixedCottrell’s theory and its extensiond,8], do not deal with
Again, under normal conditions one finds a smooth stresstime development. In contrast, techniques of dynamical sys-
strain curve. However, when the material is deformed in theems address precisely this aspect. Recently, there has been a
instability regime of the parameter space, one finds a steppa@surgence of interest in plastic instabilitj{@s-13] in light of
response in the stress-strain curve. This method of deformahe introduction of new methodology borrowed from the
tion is equally popular among experimentalists for the studytheory of dynamical systems. This has helped to obtain in-
of the instability. However, conceptually the simplest form sights hitherto not possibld0—20 One of the aims of such
of the instability [4] manifests itself when the material is theories is to be able to relate the microscopic dislocation
subjected to a creep test wherein a force is applied and th@echanisms to the measurable macroscopic quantities.
response in the form of elongation of the specimen is mea- An attempt to understand the problem in the above per-
sured. Here again, under normal conditions, the strain-timgpective was made by Ananthakrishna and co-workers sev-
curve is smooth. Under certain metallurgical conditions, oneeral years agd12,13. The basic idea was to describe the
sees steps on the creep curve suggesting a form of instabilifyroblem from the point of view of a far-from-equilibrium
transition, wherein the new temporal order could be de-
scribed as a cooperative phenomen@h,22. In a series of
*On leave from Department of Physics, Addis Ababa University,papers[23,24], starting from an extended Fokker-Planck
Addis Ababa, Ethiopia. equation for the velocity of dislocation segments, these au-
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thors arrived at a model which consisted of three types offhis will help us to investigate the full nature of the bifur-
dislocations and some transformations between the#h cation in detail. We use the reductive perturbative method
The basic idea could be summarized by stating that limiand extract a complex order parameter which is directly re-
cycle solutions arise due to nonlinear interaction betweefated to the amplitude and the frequency of the jumps on the
three different types of dislocations, suggesting a new mathcreep curve. The analysis should also help us to compare the
ematical mechanism for the instability. Even though the spatesults with the experimental ones. The expression for the
tial inhomogeneous structure was ignored and only the tenfrder parameter is checked by comparing it with the numeri-
poral oscillatory state was sought to be described, the mod&@! solution of the model. ,

and its extensions to the case of constant strain rat¢18kt In what follows (Sec. 1) we present a brief summary of
proved to be very successful in that it could explain most of "¢ Model. In Sec. Ill we use the reductive perturbative

the experimentally observed features such as the existence thod to ex_tract the amplitude equation ups_Went}"(sep-
tic) order. This enables us not only to determine the nature of

bounds on strain rate for the PLC effect to occur, the nega:’, T o o L
g"ibn‘urcatmn(l.e., supercritical or subcriticagxhibited by the

tive strain rate sensitivity, et¢2,7,13. One other important del. but al . .
prediction, which is a direct consequence of the dynamicaﬁno el, but also gives Uus an expression for the order param-
ter over most of the instability domain. In Sec. 1V, the ap-

basis of the model, is the existence of chaotic stress drops i . o : . )
a range of strain ratefl4,15. Recently, there have been proximate I_|m|t_ cycle solqun_obtamed thrpugh the ampli-
several attempts which verify this predictifiti7-20]. Indeed tude equation is compgred W'th the experimental res_ults as
this verification suggests that these few modes represent tP{ée” as with the numerlce_ll solution of the model. Section v
collective degrees of freedom of dislocatiofisote that the contains summary and discusses our results.
spatially extended nature of the system implies infinite de-
grees of freedom.From this point of view, dealing with the Il. MODEL FOR STEPS ON CREEP CURVE
temporal aspect appears to be justified. A description of the
phenomenon which includes the initiation and propagation OBf
the bands during the PLC effect has also been recently atry,
tempted[16].

Since the introduction of bifurcation theory into this field

We start with a brief summary of the model. The details
the model can be found in the original referen¢#2].

e model consists of mobile dislocations, immobile dislo-
cations, and another type which mimics Cottrell-type dislo-
cations, which are dislocations with clouds of solute atoms.
several years ago by our groi2,13, several other groups Let the corresponding densities Ng,, N;,,, andN;, respec-

have also undertaken _S|m|Iar lines of att@gk‘12'25' In the tively. The rate equations for the densities of dislocations are
process, we feel that finer aspects of dynamical systems have

been glossed over in this field. For instance, one often finds N
th_at casual remarks are made about fast and slow modes W=0VmNm—,8Nr2n—,8NmNim+ YNim— a@mNm, (1)
without actually going through the procedure of demonstrat-
ing the existence of such modes and eliminating the fast

modes in favor of the slow ong&5]. In addition, under the dNim = BN2— BN Nm— YNim+ aiN; | )
adiabatic elimination, the resulting modes which serve as dt

order parameter variables are very complicated functions of

the original modes. Yet, hand waiving arguments have been dN, _

used in building models which we believe are technically gt~ @mNm— el ©
suspect.

In our recent work[26] we showed how, under certain The first term in Eq(1) is the rate of production of disloca-
conditions, one of the variables of the model could be adiations due to cross glide with a rate constant,,, whereV,,
batically eliminated since the time constant of this mode caris the velocity of the mobile dislocations, which in general
be chosen to be much faster than the other tweo, for low  depends on some power of the applied stress, The sec-
values of a parametds,, see below We then derived the ond term refers to two mobile dislocations either annihilating
equation for the order parameter of the reduced model. Wer immobilizing. The third term also represents the annihila-
found both supercritical and subcritical bifurcation within thetion of a mobile dislocation with an immobile one. The
range of applicability. We also found that the results were infourth term represents the remobilization of the immobile
good agreement both with the reported experimental resultislocations due to stress or thermal activafisee yN;, in
and with the numerical solution of the model. However, Eq. (2)]. The last term represents the immobilization of mo-
eliminating one of the variables entirely restricts the applica-bile dislocations either due to solute atoms or due to other
bility of the analysis to the two-dimensional plane of the pinning centersa, refers to the concentration of the solute
parameter spac@arametersa andc; see below. In addi- atoms which participate in slowing down the mobile dislo-
tion, we also found that even within the limited domain, very cations. Once a mobile dislocation starts acquiring solute at-
high-order nonlinearities control most of the bifurcation do-oms, we regard it as a new type of dislocation, namely Cot-
main. trell's type N;. This process is represented as an incoming

The purpose of the present work is to perform the analysiserm in Eq.(3). As they acquire more and more solute atoms
by keeping all the three modes in the model, and to explorg¢hey will slow down and eventually stop the dislocation en-
the entire instability domain spanned by all the three paramtirely. At this point, they are considered to have transformed
eters @, by, andc). In addition, this analysis should help us to N;,,. This process is represented by a loss term in(Bg.
to verify if high-order nonlinearities could control part of the and a gain term in Eq2). These equations can be cast into
subcritical bifurcation, as found in our recent anal\{&6]. a dimensionless form by using scaled variables
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X= Nm(—>, y= Nim( the general solution as a linear combination of these vectors.
0% oV, . o : -
4) The effe_ct of the nonlinearity is handlgd progres'swely using
the multiple-scale method. The equation governing the com-
to obtain plex order parameter takes the form of the Stuart-Landau
equation, and corresponds to the time-dependent Ginzburg-
X=(1—a)x—bgx?—xy+Yy, (5) Landau equation(TDGL) for a homogeneous medium.
(Henceforth, we will also refer to this equation as the ampli-
6) tude equation.On the other hand, the asymptotic solution,
which is a limit cycle, collapses to the subspace spanned by
the slow modes with no trace of the fast mode. It may be
worth emphasizing that this method is essentially the same as
reduction to the center manifold. Indeed, the equivalence of
the center manifold theor}33—-39 to the reductive pertur-
bation has been establishig®]. Other techniques of extract-
ing amplitude equations have been devised whose end results
are basically the same. For instance, a perturbative
renormalization-group methd®6,32, and its recent exten-
sion on the basis of envelope thedi¥7], has also been
developed as a tool for a global asymptotic analysis which
"an be used to extract the amplitude equations.
We start with Eqs(5)—(7). There is only one fixed point,
fined by

B B Ba; vectors corresponding to the bifurcation point and expressing
LA e
m

y=bo(bgx>—xy—y+az),

z=c(x—2), (7)

where the dot represents differentiation with respectrto
while a=«a,/6V,,, bp=7y/6V,,, and c=«;/6V,,. Equa-
tions (5)—(7) are coupled set of nonlinear equations which
support limit cycle solutions for a range of parameterd,
andc that are physically relevana refers to the concentra-
tion of the solute atomdy, refers to the reactivation of im-
mobile dislocations, and to the time scales over which the
slowing down occurs. The dependence on stress and te
perature appears through,,. We demonstrated the exis-
tence of limit cycle solutions and also obtained approximatqje
closed-form solutions for the limit cycld42]. In addition,

the model was studied numerically. Using the Orowan equa- 1-2a+[(1—2a)%+8by]*?
tion which relates the rate of change of straB) o dislo- Xa=2a= 4b, and Ya©=5-
cation density and the mean veloci§=bN,,V,,, with b as (8

the Burger's vector, steps on the creep curve follow auto- = ] ] o ]
matically, since the densities of dislocations are oscillatoryP€fining new variables which are deviations from the fixed

Several experimental results are reprodufcks]. point
X=X—X,, Y=yY—VY,, and Z=z-z,, 9
Ill. REDUCTIVE PERTURBATIVE APPROACH
Egs.(5)—(7) become
We briefly outline the reductive perturbative approach to

problems of formation of new states of order in far-from- Xz—(aX+XY+ boX?+XY), (10
equilibrium situations. Transitions occurring in these systems

are quite analogous to equilibrium phase transitions. The Y=—bo(I'X+ 8Y —azZ—byX2+XY), (11
general idea is to construct a “potential-like function” for

the “order-parameter”-like variable in the neighborhood of Z=c(X-2), (12)

the critical value of the drive parameter. This would permit
the use of the methods developed in equilibrium phase tranypere
sitions for further analysis.

Near the point of Hopf bifurcation of the systef&qgs. a=a+2bgX,+ya—1, x=X—1,
(5)—(7)], corresponding to a value near the critical drive pa- (13)
rameter, a pair of complex conjugate eigenvalues and an-
other real negative eigenvalue exist for the linearized system I'=y,—2bgx,, d0=x,+1.

of equations around the steady state. As we approach the

critical value from the stable side, the real part of the pair ofEquations(10)—(12) will be solved reductive perturbatively.
complex conjugate eigenvalues approaches zero from tH—é/Ve note here that it is possible to reduce this system of
negative side, and hence the corresponding eigendirectiof@$iuations to only two by adiabatically eliminating E¢0).
have a slow time scale. As we enter the instability region,This is done by noting that, whea, andc are much smaller
these real parts become positive. In contrast, the effect of théan a, by rescaling Eq(10), it can be shown to be fast
change in the drive parameter on the real negative eigenvali@riable and hence can be adiabatically eliminated. This was
is negligible. Thuswhile the two eigenvectors correspond- What was done in Ref.26].] Writing these equations as a
ing to the pair of complex conjugate eigenvalues are slownatrix equation where the nonlinear part appears separately
modes, the eigenvector corresponding to the real negativéom the linear part, we obtain

eigenvalue is a fast (and decaying) moHer this reason, the R

slow modes determine the formation of new states of order. dR S o

The reductive perturbative method is a method where the EZLRH\L (14
slow enslaving dynamics is extracted in a systematic way

[27-32). The method involves first finding the critical eigen- where
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X
R=| Y|, (15
z
] -X 0
L=| — bof - b05 abo (16)
c 0 —C
and the nonlinear parﬁ is given by
—boX?—XY
N=| bo(boX*=XY) (17
0

Consider the stability of the fixed point as a function of
the parametec. The eigenvaluek;, i=1, 0, and—1, of the
matrix L are determined from the cubic equation

A3—TA2+PA—A=0, (18)
where
T=—(a+ dby+c), (19
P=ébgc+ a(Sbg+c)—xTI'bg, (20
and
A=—byc[ad+ x(a—T)]. (21)

The fixed point becomes unstable when one of the following

conditions are violate{i38]:

T<0A<0 or A-PT>O0. (22

ANANTHAKRISHNA

0.2

FIG. 1. The instability region determined by all the three inde-
pendent parametees by, andc of the model. It is bounded by the
three surfaces: the, surface(shown by a series of curved lines
thec=0 plane(shown by a series of straight linegnd theby=0
plane.[Note that thec, surface is determined from E(R3).]

0 0 0
L,=| O 0 0 (29
—Cq 0 Co
The eigenvalues df, are
AN -1=Flw and N\p=T, (25

where w?=P (P andT being evaluated at=c,). Taking

the solution forR as a growth out of the critical eigenmodes,
we express it as a linear combination of these eigenmodes:

-1
=) _ oty NoTr —loTp* _ NiTp
R(1)=V €T, + Vel +W*e Mrl—; W,eNT,

(26)

It is easy to show that the first two inequalities are not ViO-whereFj’s are right eigenvectors defined h)ész)\jfj with

lated. Substituting foA, P, andT in the third inequality of
Eqg. (22), we obtain

(a+ 8bg)c®+[(a+ 6by)?— yabg]c

+bo(a+ dbg)(ad—xI')<O0 (23

as the condition for instability. Using the equality sign in Eq.
(23) gives us the critical value of the drive parameter,c,

for given values ofa andb,. For c<cy, the fixed point is
unstable. Since is non-negativénegativec is unphysica),
we obtain a unique, for the allowed pair o& andb, values

r_1=ri. We also introduce left eigenvectors;,, defined

by §jTL0=)\j§jT, whereT stands for the transpose. Substitut-

ing this expression foR in the matrix equation, Eq(14),

and multiplying both sides of the equation by one of the left
eigenvectors, we obtain an equation governing the corre-

sponding amplitude:

e}\jT d\PJ

d =€ ik e+ > gj|m‘1’|‘1'me(k'ﬂm)f-
T k I,m,m=|

(27)

within the instability. Figure 1 shows a three-dimensionalExpressions for the coefficients, andgj, are given in Eq.
plot of the instability region involving all the three param- (C11) and Eqgs.(C13 and(C14), respectively, in Appendix
eters of the model(Note that since all the variables and the C.

parameters are dimensionless quantities, we have plotted all We express¥; as a power series expansiondH?
figures in dimensionless quantitigs.

To obtain an approximate analytical solution of Et4), V= 61’2¢}1)+ El//,(2)+ 53’2¢}3)+ Ty (28)
we follow a reductive perturbative approach similar to that ] i .
used in Refs[30] and[31]. We choosec=cy(1—€) with and introduce multiple time scales such that
0<e<1, and write the matribdt as a sum of two matrices, d 9 3 3
L=Lg+€L,, whereLg is the matrixL evaluated forc=c, — =t e—+E—t . (29)
and dr dr dn a7y
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where r;=e€7, 7,=€’7, .. .. Substituting these expressions
for ¥; and d/d7 into the equation for the amplitudes, Eq.

(27), we successively solve by equating terms of the same

order in powers of. First, terms of0(e'?) give

ﬁlﬂ(l)
aT '

(30

implying that 44 is constant in the time scale of O(e)
terms give the equation

J? |
= . (1),,(1) (}\k+)\|*)\j)7
G oy Gt wiVe . (D
which, upon integration, gives
w(Z)e)\ T_ z|<k hjkl lﬂ(kl)wfl)e()\k‘*')w)r, (32)

whereh; = gji /(\e+ N — ). O(€¥?) terms give the equa-
tion

24, ¢“
v 2
or 2 Hik ke k|2|<k gjk|(¢(kl)¢§ )

+l/lf<2)¢|(l))e()\k+)\l_)\j)7- (33)
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0.02

FIG. 2. Plot of the bifurcation diagram in tteeb, plane. The
instability region is bounded by the parabolic-shaped curve and the
by=0 line. The unshadedshaded region exhibits supercritical
(subcritica) bifurcation. The shaded region marked by d@pen
circles shows the portion within the subcritical bifurcation, where
the quintic(septio amplitude equation is supposed to hold.

order parameter grows continuously in proportiort3 [see

Usin_g the compatibil_ity condition, we match terms that aregq. (36)], the transition is continuoué second-order-type
varying on a slow time scale found on both sides of thetransition corresponding to supercritical bifurcation. There

equality, and extract the slow dynamics

(1
IV
a1y

= uiy i+ g 2D (34)

An expression fory; is given in Eq.(C12 in Appendix C.

is a relatively small portion of the instability region, shown
in the same figure in shades, wheyeis found to be positive
implying that the transition is discontinuous corresponding to
subcritical bifurcation. In this regime, one has to go to quin-
tic or even higher terms in the amplitude equation to obtain
an expression for the order parameter. We carried out the

Since we are interested in asymptotic solutions, the equationgductive perturbative method further to derive thentic,

governing the oscillatory amplitud® and its complex con-
jugateW* are our concern(The subscripf =1 is left out
from W, for the sake of brevity.To O(e¥?), W= 2V
and, thus, Eq. (27) takes the form otabic Stuart-Landau
equation:

dv

—-—= + 2P,
ar enV + 5| V¥

(35

Note that u(=pi)=p,+1x; and p(=n)=n+1n are
complex coefficients¥ is the complex order parameter vari-

able whose steady-state solution gives its amplitudeientsv=v,+1v; andé=¢,

(squaredl as

wP=—et, (36
r
and its frequency) (with ¥=|¥|e'’") as
m
Q=6<Mi——'m : (37
M

This solution exists provided, is negative since, is posi-

tive. #, is found to be negative over a major part of the

instability region in theby—a plane, as shown in Fig. @he

d
—V=euV+ 5| V|2V + |V,

dr (38)
as well asseptic
d
d—T‘If= enV + |V 2W + v| V|4V + £ W[, (39

amplitude equationg.Expressions for the complex coeffi-
+1¢&; are given in Eqs(A3) and
(A4), respectively, in Appendix AThe amplitudgsquareg),
|W|2, and frequencys, found from the steady-state solution
of the quintic amplitude equation, are

Vy Vy

1/2
N

Vr

—4et| (40)

1
2_") _
i 2[

and
Q=epi+ 7| P+ | V[, (41)

while these same quantities found from the steady-state so-

unshaded region In this case, since the amplitude of the lution of the septic amplitude equation are
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1 v [[v\® #]" u 0.9
\Pzz—[——% (—r) —4| +e—+0(e !
| | 2 & & & Nr (€9

(42
0.8r
and

Q= epi+n| W2+ v V|*+ &|V|°. (43 0.7k

The ranges of validity of the quintic and septic amplitude |\{l|2
equations enable us to describe a large portion of the sub
critical bifurcation. Figure 2 also shows the portion within

the subcritical bifurcation where the dynamics of the system

is supposed to be governed by tipeintic (marked by dotg

and septic (marked by open circlgsamplitude equations. 0.5
The rest of the domain of subcritical bifurcation, whereen
higher-order amplitude equation need to be considered, is

0.6

10

marked by crosses on the same figure. 0.4 e ‘ —
As can be seen from Fig. 2, there are two distinct regions 0 0.005 0.01 0.015
of subcritical bifurcation located on either side af 0.5. bo
The crossover from a supercritical to subcritical bifurcation
is first seen fob,=0.01 arounda=0.65 as the value df, is FIG. 3. Plots of|¥|? and P vs b, within the superecritical do-

reduced. The extent of subcritical bifurcation in thg—a  Main, whena=0.45 ande=0.01.

plane increases d%, decreases. The validity of the ampli-

tude equations will be examined by comparing thefynction of T. Figure 3 shows plots of¥|?> and P as a
asymptotic solution derived from them with that of the limit fynction ofb,. From the above discussion on the dependence
cycle solution found by numerically integrating the model ¢ bo 0N andT, we see thal¥|2 should increase as stress

equations. increases for thenajor part of the stress value, sinae, is
large. On the other hand, it should decrease with an increase
IV. COMPARISON WITH EXPERIMENTS in temperature. Since stress and temperature are measurable
AND NUMERICAL SOLUTIONS quantities, our predictions can be compared with experimen-

tal results. The amplitude and period of the limit cycle are
related, respectively, to the amount of strain jumps and the
To start with, consider the supercritical regime, where ex-period of the jumps on the creep curve calculated through the
pressions for the amplitude and period of the limit cycle areOrowan equation. There are very few experiments in this
relatively simple. Using the steady-state solution of the cubignode of testing, as mentioned in Sec. I. The only experiment
amplitude equation, Egs. (36) and (37), the dependence afhere this dependence on stress and temperature has been
amplitude |W|? and periodP [«1/(w+Q)], of the limit  measured for a limited range is that in Ri]. According to
cycle ona or by can be obtainedHere we will only con-  this, the amplitude of the strain jumps increases with stress
sider how the two quantitiegV’|?> and P depend orb, for  while its period has a decreasing dependence on stress. Ex-
fixed a. A similar analysis can be carried out for parameier periments from constant strain rate case also exhibit the same
fixing by.) The parameteby(=y/6V,,) is a function of the trend when the results are translated in terms of constant
applied stressd,) and temperatureT)). As remarked ear- stress experiments. It is well known that the amplitude of the
lier, ¥ represents the stress and thermal activation, and, atress drops decreases with applied strain rate. In fact, even
temperatures of interest, thermal activation can be comthe numerical solution of the equations extended to the con-
pletely ignored. As for the stress activation, it is a thresholdstant strain rate case predicts this behap@]. This implies
process and, therefore, can be taken to have a weak depdhat the amplitude of strain jumps should increase as stress
dence on stress until a critical value of this stress, beyonthcreaseg§40]. [This relation can be seen as follows. In the
which it should show a rapid increase. One such functionatonstant strain rate case, the deformation rate is fixed, and
form for v could be exp{-o./0), whereo, represents the the stress developed in the sample is measured. When the
value of the stress beyond which the function rapidly risescontribution to the plastic strain rate increases due to in-
Since stress activation occurs at large values, one expgcts creased dislocation motiaffior whatever reasonsthe stress
to be large. Using the standard expressif®9] for  has to fall in order to keep the applied strain rate constant.
V(o4 T)=Vo(oa/og)"exp(—E,/KT) (with m>1), we Thus the relation between strain rate and stress is opposite.
obtain Clearly, the general trend is consistent with the experimental
results for most of the value dfy. The authors of Ref5]
also reported that the amplitude of the strain jumps increases
while its period decreases with increase in temperature,
which is consistent with our result.
From this, we see thdt, has a decreasing dependence on Figure 4 shows plots of the amplitudequared and pe-
stress, with the termd, /o) ™ dominating up too., be-  riod of the limit cycle(LC) as a function ob, for a certain
yond which it should increase. Clearlp, decreases as a interval within the subcritical bifurcation. Using an analysis

A. Comparison with experiments

bo~ y(a)<g—:>_ EEm/KT, (44)
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FIG. 4. Plots of ¥'|? andP vs b, within the subcritical domain

whena=0.39 ande=10"%.

0.05+
similar to that above, we find that while the dependence of
the amplitude orb, is consistent with the experimental re-
sults reported in Ref5], the dependence of the period g
is predominantly inconsistent with this report.

Experiments in the constant strain rate case show thatthe 7 |
stress drops are seen to arise both abruptly as well as con-
tinuously [10]. Translating this result to the constant stress
case, it implies that the strain jumps can arise both abruptly
and continuously. This feature is manifest in the supercritical

and subcritical bifurcations seen in our calculations.
-0.05F

B. Comparison with numerical solutions

Having derived the amplitude equation, we now compare
its result with the numerical solutions obtained via Egs.
(10—(12). As stated earlier, there are two distinct types of
solutions, namely, the supercritical and the subcritical Solu- £ 5. piots of the limit cycle solutionén the X-Z plane
tions. Even in the region of subcritical bifurcation, we havegptained from the secular equati¢solid line) and that obtained
three types—first, where the quintic amplitude equationgom numerical integration of the modgEgs. (10)—(12)] (marked

works; second, where the septic amplitude equation worksiith doty when (a) a=0.521,b,=0.0202, ande=0.1, and when
and, third, the rest of the instability domain where even) a=0.6, b,=0.01, ande=0.001. Both bifurcation points lie

higher-order nonlinearities dominate and, as such, requir@ithin the supercritical bifurcation domain.

even higher-order amplitude equations. We will compare the

solutions obtained from these with the numerically exact sotion points within the domain of supercritical bifurcation. As
lutions of Egs.(10)—(12). can be observed clearly, they match very well.

First consider the supercritical region. Using the steady- In a manner similar to the supercritical bifurcation, the
state solution of the cubic amplitude equation, H§6) and  analytic expression for the LC for krge portion of the
(37), in Eq. (26) leads to an analytic expression for the LC domain of the subcritical bifurcatiois obtained by using the
near bifurcation points in the domain of supercritical bifur- steady-state solution of the quintic or septic amplitude equa-
cation. This is usually referred to as tlsecular equation tions. In this case, there are three distinct types of solutions:
The derivation of the equations governing the LC are giver(a) first, wherev, is negative and:;, positive, implying that
in Appendix B. This solution can be compared with the nu-only the quintic amplitude equation has a steady-state solu-
merically exact solution obtained by integrating the systention; (b) second, when/, and ¢, are both negative implying
of equations, Eq910)—(12). Since the region of applicabil- that both the quintic and septic amplitude equations support
ity in the by—a plane is large, we choose one solution for steady-state solutions; aiid) third, whenv, is positive and
large values ob, (at the top end of the bifurcation diagram &, is negative, implying that the septic amplitude equation
and another value db, at the lower end. Figures(® and  supports a steady-state solution while the quintic does not.
5(b) show the plots of the secular equation along with theirThe resulting LC’s are compared with those found from the
respective numerical solutions for two widely spaced transinumerical ones. For cage), we picked two different bifur-
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FIG. 7. Plots of the limit cycle solutiofin the X-Z plane ob-
tained by using the secular equation derived from the quintic am-
plitude equatior(outer solid ling, from the septic amplitude equa-
tion (inner solid ling and that obtained from numerical integration
of the model[Egs.(10)—(12)] (marked with dotswhena=0.375,
by=0.004 ande=0.0001. The bifurcation point lies within the sub-
critical bifurcation domain, wherboth v, and ¢, are negative.

dicated by our earlier work26]. We show caséc) in Fig. 8,
comparing the LC derived from the septic amplitude equa-
tion with that of the numerical one for a bifurcation point
where the quintic amplitude equatiaoes nothold. The
agreement is reasonable except around the sharp turning
point.

Finally, it is worthwhile to state that expansion of the
amplitude equation even up to septic term fails to cover the

FIG. 6. Plots of the limit cycle solution§in the X-Z plane
obtained from the secular equatig¢solid line) and that obtained
from numerical integration of the modgttgs.(10)—(12¢)] (marked
with dotg when(a) a=0.647,b,=0.009 ande=0.01 and wherib)
a=0.38, by=0.004, ande=0.0001. Both bifurcation points lie
within the subcritical bifurcation domain where the quintic ampli-
tude equation hold§.e., »,<0 and¢,>0).

cation points—one to the right and another to the left of
a=0.5. Plots in Figs. @ and @b) show LC's, obtained
from the secular equation and from numerical equations. For
case(b), Fig. 7 shows three plots of LC’s, two of which are
obtained from the secular equations corresponding to the
quintic and septic amplitude equations, while the third one is
obtained from the numerical solution. It is clear from this
figure that the LC derived from the septic amplitude equation
is a better approximation than that derived from the quintic
one. This shows that the “containing” role is played not

50

-100

-1860

A50 100 B0 0 50 100
X

FIG. 8. Plots of the limit cycle solutiofin the X-Z plane ob-

only by the quintic but also by the septiand even higher  tained from the secular equati¢solid line), and that obtained from
term of the nonllnearlty. We also find that the region overnumerical integration of the modB{qs(]_O)_(]_Z)] (marked with
which such a situation is valid is a substantial portion of thedoty when a=0.37, by=0.001, ande=0.0001. The bifurcation

validity of the quintic amplitude equation, suggesting thatpoint lies within the subcritical bifurcation domain where>0 and
higher-order nonlinearities are in fact important, as was in<,<0.
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entire instability domain, even though most of it is covered.the context of phase transitions. For conventional models, in
This also suggests that higher-order nonlinearities control ththe language of phase transitions, the free energy is described
rest of the subcritical bifurcation domain. This feature is notby an expansion in power series of the order parameter up to
usually encountered in model systems. sixth power. While the free energy for second-order phase
The above comparison reveals the followirfiy: The ex-  transitions can be described by retaining up to fourth power
pression for the LC in the supercritical domain mimics thein the order parameter, it is usually sufficient to retain the
numerical solution very well, provideelis taken to be small ~Sixth power for the description of first-order phase transitions
enough.(ii) In the subcritical domain, the two results also (With the appropriate signs for the coefficients in the expan-
generally match well with each other. However, for values ofSio0- In the present case, however, we need to go to as high
the parameters where the valuemls close to zerqwhich as t_he eighth pov_ve(or morg of the order_parameter In some
also corresponds to small valuestgy), higher-order nonlin- regions of the drive parameter to describe the corresponding

earities could supplement the contributions arising from th free energy when the transition is of first-order type. This
J supplemer g ro Seature is rather unusual, and not found in conventional mod-
lower ones in determining the LC. In other words, if the

- . . (?Is of phase transitions.
coefﬁqent of .the.next-h|gher order h_as also a hegative rea Due to the closed-form expressions for the order param-
p_art, its contribution may have to be included in the eXpreS?’.—)ter, the present calculation helps us to map the theoretically
sion for the order parameter. introduced parameters to the experimentally measured quan-
tities. For instance, in experiments, one measures the ampli-
V. SUMMARY AND DISCUSSION tude of the strain jumps on the creep curve as well as their

We have carried out a reductive perturbative approach t§€duency as a function of stress and temperature. The de-
the problem of steps on the creep curve, regarding it as gendence of the amplitude of the strain jumps and its fre_z-
formation of ordered state when the system is driven awa{@U€ncy on stress and temperature can be evaluated by using
from equilibrium. The dynamics of the system is describedn® Order parameter equations in Orowan’s equation by not-
by two coupled amplitude equations: one for a transient orind that|¥| corresponds to the amplitude of the strain jumps
der parametew ,, and another for the complex order param-While the frequency) together withw gives a measure of
eter ¥ in the neighborhood of the bifurcation point. The the frequency of the stefBy properly relating the parameter
order parametef represents both the amplitude and thePo 0 stress and temperature, we found that for a certain
phase of the limit cycle solution whes>0. Since the above ange of the instability the_ amplitude increases while the
derivation is valid only in the neighborhood of the critical P€riod decreases as stress increaaesonstant temperatyre
value, the expression for the order paraméiteis valid only qualitatively agreeing Wlth.the rgported exper_lmental re_sult
for small e. This has been exemplified by the quite reason-Of Ref. [5]. Also, the amplltu_de'lncreases while the period
able agreements between the LC solutions found from thg€Creéases as temperature is increag#dconstant stress
analytic expression and that from the numerical integratiofVhich is again consistent with the experimental results of
of the model. We have shown that both supercritical andRef. [5]. In addition, we found other ranges within the insta-
subcritical bifurcations are seen in the transitions to the inPillty showing various kinds of dependence of the order pa-
stability domainWhile the major part of the phase boundary "@Meter on stress and temperature. _
exhibits supercritical bifurcation, subcritical bifurcation ~ Finally, the present exercise demonstrated the compli-
gradually dominates as the value of ks reduced The re- cqte_d dependence_ of _the order parame'_[er variable on the
sults of an earlier calculatiofi2] which used the method of ©riginal modes. This will serve as a warning to those using
relaxation oscillation and showed a first-order-type transi@nd waiving arguments for declaring certain modes as fast
tion, is consistent with the present one since the values of thg'0des and others as slow modes in the modeling of such
parametersg=0.63,b,=10"*) falls in the subcritical bifur- Problems.
cation domain. In our more recent waik6], where we first
adiabatically eliminated one of the variables and then applied
the reductive perturbative method for the reduced model, we
found both supercritical and subcritical regions. However, One of us(M.B.) would like to thank the International
due to the fact the adiabatic elimination itself was valid onlyProgram in Physical Sciences, Uppsala Univer&ayeden
for small values ob,, the results were found to be valid in a for offering a fellowship to study at Indian Institute of Sci-
small domain. Further, we found that very high-order non-ence. This work was partially supported by IFCPAR Project
linearities were important. This result is supported by theNo. 1108-1.
present calculation.

The present analysis shows a feature which is normally
not seen in model systems, namely, that higher-order terms APPENDIX A
than quintic may control the subcritical bifurcation. In fact,
even when the quintic term plays the containing role, higher-

- o appearing in the TDGL equation, i.e., expressionsuorsy,
order terms may also contribute significantly to the role of , and ¢ in the equation Q/d7)W=euy+ 7|V|2P

containment. Thus, in (_jeriving the expression for_the LC, it V| W[*W + £/ |5 . Note that they are functions of the pa-
may be necessary to find out how higher- and higher-orde ametersa, b, andc. They are given below:
nonlinear terms in the expansions in the amplitude equation o ’ '
contribute to the asymptotic solution.

We comment here on the unusual feature of the model in M= 11, (A1)
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In this appendix we give expressions for the coefficients
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7= (A2)

2 (gljahjﬁy+glakhkﬁy)'
ksas<j,y<p
In Eq. (A2) and all the following equations, summations over
latin alphabets run over 1, 0, and -1 while those o&eeek
alphabets run overt-1. A summation of Eq(A2) includes
only those terms which satisfy the conditient 8+ y=1,

usz (TP +T(29), (A3)
<]
where
TJ(&A): (91jaljgysrt 91aklkpysy)  (A4)
(sésysB<a
and
Tie?= (Njapticysrt eaptiyeg),  (AS)
B<a,{<d<y

with the condition on the summations of Eg84) and(A5)
to bea+ B+ v+ 6+ ¢=1. Finally, the septic coefficierit is
given by

1,6 2, 3,4
§=k2<]_ (TEO+TEI+TEY), (AB)
where
T(1'6): .aW. -
Ik ksasj,osps{sdsysfsa (gll 1Bv8Lpc
+ glakwk,Byﬁg’p(r) ’ (A7)
Tho= ik(Nj gV kyszpot Nkaglyocpo) s
K e oy She 5= pea 91jk(NjapViyszpet Nkapt jyocpo)
(A8)
and
34_
Tjk - gljk(tjaﬁyukﬁgpa+tkaﬂyuj5{po’)1

y<PB<a,0<p<{<$

(A9)

with the constrainia+ 8+ y+ 6+ {+p+o=1 imposed on
the summations of Eq$A9), (A10), and(All). Expressions

fqr Mik s Gjki hjkl_- tikim» Ujkimns Vjkimnps @NdWjimnpq are
given in Appendix C.

APPENDIX B

In this appendix, aflapproximate asymptotic solution for
R describing the limit cycle will be derived using the steady-

state solution of the particular TDGL equation. For the insta-

bility region where the cubic TDGL equation holds, expan-

sion of ¥ up to ¢{* will be involved in determiningR, so
that

R= e¢62)eA07F0+ [(eY?yV+ ezﬁ(Z))eiWTF+ c.cl.
(B1)
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Note that the asymptotic solution does not contain the
z/;gl)eAOT term since)\, being negative, it decays in time. To
0(61/2),

P = El/zw(l) - w(l): e vy (B2)

Using Eqs(B2) anci(32) in Eq. (B1) will enable us to derive
the components dR, which are given by
X=AV|cog Q.7+ 6,) + By, | ¥|>cog2Q 7+ by)
+ By | W |2+ Bg,| W|%cog2Q .7+ @), (B3)
Y=A,|¥|cog Q.7+ 6)) + By, | ¥|?cog 2Q 7+ )
+Bay| W|?+Bay | W|2cog2Q 7+ @), (B4)
and

Z=A,|V|cog Q.7+ 6,)+ By,|¥|?cog 20 7+ ¢,)

+BZZ|\I,|2+B3Z|\I,|2COiZQCT+ ®2), (BS)
where
Q=0+ w, (B6)
Ag=2]r 14/, (B7)
Im(r
6d=sin‘1( ( 1d)>, (B8)
I 1]
B1a=2|h111 1/, (B9)
Im(hqqqr
¢d=sin‘1( (hygq 1d))’ (810
[h114r 14l
Boa=2[h11-1r 14l, (B11)
Bsg=2[h1-1-1r1dl, (B12)
and
—Im(hy_q_qr
og=sin (h1-1-1r19) (B13)

[hi—1-1r 14l

Here the subscripd denotes, y, or z, while Im denotes the
imaginary part of the concerned argument. Expressions for
hji, andr;q are given in Appendix C. For the instability
region where quintiqor septi¢ TDGL equation holds, an
expansion of¥ up to y{* (or up toy{®)) will be required in
determiningﬁ, so that

N
n/2¢én)e)\07|?0+ 21 [en/2¢(n)eiw7f’+ C.C.]
n=

(B14)

N
R=> e
n=2

with N=4 (quintic cas¢ or 6 (septic case The same proce-
dure as done for the cubic case follows for the quintic as well
as the septic cases.
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APPENDIX C

1
_ . o , v, = Ui gysrt DikaU
In this appendix we first give the expressions fay;, Japyol Cjaﬁyﬁgkzl L(Gjatthysc + Gikallksysr)
tkim,j s Ukimn,j» Ukimnp,j s andwk,mns,qj that appear as coeffi-

cients in the determination af{®, 4{*, (¥, ), and + 05k (Miaptiysrt Naplicyer) 1,

(6) i . . .
¢, respectively, such that provided a+ B+ y+ 5+ {#]. Otherwise,v;,z,5,=0. The
expressiorCj,g,s:= /(N g+ A g+ N+ X5+ N, —1\j),

(C9

¢}2)e)‘17= Zk hjklwﬁl)lﬁfl)e()\k-%—)q)r’ (C1) 1
- Wjaﬁyé‘{p:C—E [Q+gjk|(hka,8u|'y5§p+hlaﬁ’“ky&{p)
jaBysp kil
‘/’ES)EMT: P DeN N7 (C) + Gikitkapytiszpls (C10
<|<k
; where  Q=(0juvigysgpt ikalkpysze) AN Capysgp
Next we give the expressions e, 7;, andgjy:
pleh= X Uamntid g gl g et M AT CoSjz(—Nkxt 'kr)
ns=m=<|=<k Kik= — , (Cll)
(C3) Sjrj
PoeiT= D D ikimnp 7] :lga;wgﬁ (Iikahkgy T 9jathigy), (C12
psn=sms<lI=<k ’
XY P o g MR Am A for k#1, 9= 2Fxxilixd 1+ Fxy (M 1y + Ty 1)
C13
(CH
while
and )
Jikk= Frxil i Fxyil kxky s (C14
where
‘ﬂj(e)e)\jT: 2 Wikimnpq
gspsnsmsl=<k
bO(_SjX+bOSjy)
o fo == (C19
5 @M N F N A+ A+ AT (C5) I
¢ _ (St hosyy) 16
We give only those coefficients that contribute to the XYl §J.TFJ. ’

asymptotic solution. Note that summation over latin alpha-

bets take values 1, 0 and -1 while summation over Greek =T
’ =i riy liz), C1
alphabets take values1: 1= (T Ty Ti2) (€17
0 S [ =(Six Siy Siz), (C18
higg= (C6)
jaB -\’ > T
Aot A=A S 1= Sixl jx+SjyT iy + Siaf iz (C19
1 rix=X(CotNj), (C20
tjaﬁy:C_—|<2<k (9jathigyt Qjkahigy), (CT)
jagyl<a= ry=—(Cot A (a+X)), (C2)
provided a+ B+ y#j. Otherwise, tiap,=0. r'iz=CoX, (C22
Cjaﬁy:)\a+)\ﬁ+)\y_)\j1
st:_(CO+)\j)(b05+)\j)1 (C23)

1
Ujagys™ C—; [(GjaitigysT Gjkatksys)
japysk: Siy="ix (C24

+ Gjki(Nkaghiye) 1, (C8) and

WhereCjaﬁwg= l/()\a+}\ﬁ+)\y_}\J) szzabo)(. (C25)
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